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The problem of minimizing the convective heat flux, transmitted from the boundary layer to the surface of a body in a flow, is 
considered under supersonic flow conditions. The specific coolant flow rate across a porous or perforated shell is regarded as 
the control, and the power of the cooling system, determined using Darcy’s filtration law, is regarded as the constraint. Unlike 
similar papers on the optimal control of a boundary layer [l-3], the equation for the conservation of energy in the heat shielding 
shell of the apparatus is additionally considered. This approach enables one to maintain the desired temperature of the outside 
of the skin by profiling the skin thickness. 0 2001 Elsevier Science Ltd. All rights resewed. 

In order to solve the optimal problem below, we use the following: the infinitesimal Lie-Ovsyannikov 
apparatus [4], the theory of Niither invariant variational problems [S, 61, the method of Dorodnitsyn 
generalized integral relations [7] and, also, numerical methods. A computational experiment was carried 
out for the case of supersonic gas flow at zero angle of attack past a spherical cay4ma2de of 14X17H2 
corrosion-resistant steel with a porosity l-l = 0.3, a permeability Kn = 6.4 x lO_ m and a thermal 
conductivity h = 32 W/m K. The gain in the value of the functional compared with a constant coolant 
flow rate along the generatrix was 32%. 

1. FORMULATION OF THE PROBLEM 

We will take the equations of a laminar boundary layer on a solid of revolution, past in a flow at zero 
angle of attack, in the form [8] 

(1.1) 

p = pRT, p = CLJb(7) 

The x axis is directed along the generatrix of the body of axial symmetry, they axis is perpendicular to 
the x axis along the direction of the outward normal, u and u are the projections of the velocity vector 
onto the coordinate axes,p is the pressure, r(x) is the radius of the solid of revolution, H = CPT + u2L? 
is the total enthalpy, Cp is the heat capacity at constant pressure, Tis the gas temperature, R is the gas 
constant, Pr is the Prandtl number, b(z) is a known function of the dimensionless temperature z = T/T,, 
the subscript e corresponds to the gas parameters on the outer edge of the boundary layer and the 
subscript o corresponds to the gas parameters at the point of total stagnation of the flow. 

The boundary conditions are taken in the form 

y=o: u=o, lJ =(mlp)w, H=H,(x)=CpTw(x) 

y+-: u+U,(x), H+H,(x) (1.2) 
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Here, Tw(x) is the specified temperature of the outside of the skin (it is assumed that it is equal to 
the gas temperature in the boundary layer), mw = (90)~ is the specific flow rate of the injected gas (of 
the same composition as that in the free stream) across unit area in unit of time and the subscript w 
corresponds to gas parameters on the wall. The power consumed by the cooling system in injecting gas 
through the porous or perforated surface in a segment [0, xk] is estimated, taking account of Darcy's 
law, by the functional 

Xk x k 

N = 2n I r~pu wdx = 2rta I 2 ru wdx (1.3) 
0 0 

where the parameter a depends on the skin thickness, the porosity and permeability of the material 
and on the thermophysical properties of the gas in the pores. 

The following variational problem is formulated. Among the continuous controls re(x) = (po)w, it 
is required to find that control which ensures that a minimum of the amount of heat 

O = 2n I dx (1.4) 
0L ay ),__0 

is transferred in unit time from the boundary layer to the surface of the solid of revolution in the 
flow, subject to specified constraint (1.3) on the power of the cooling system and relations (1.1) and 
(1.2). 

Using the Stepanov-Mangler-Dorodnitsyn transforms [8, 10, 11] 

I x 
S = I.-'_T ! r2~e(I -a2)r/('t-l)dx, ~ q  

t= l ~ e~o Vm~ 

Y (1 -ot2) v/(v-I) u IVma~13 
1]= I ray, U = - - ,  V= 

0 "C l~ e ~ Ve ° 

1~ ~1] I1 O~ 2 - - - - - ~ - - - ,  V = I - x -  w=(I-ote2) - ' l / ( ' r - I )  r2 ax xr 

Vmax = 2 
( ' Y - I ) M 2 ,  a = Vma,, v 

w +u,t u (1.5) 
~e Ue 

where l is a certain characteristic dimension (for example, the radius of the sphere r0 in the case of flow 
past a spherical cap), system (1.1) reduces to the form 

at 1~(I - at ~, dt ] 

aU aV 
as + ~ = o (1.6) 

1 a a¥ 2 1_ 
bs bt } ot ~, at ) 

Boundary conditions (1.2) take the form 

t=O: U=O, V=m/q, q = l - x w  (1.7) 
t ---~ ~*: U ---) I, V--) O 

where 

( dot e / ds 
m(s ) :  (pu )w I q= r/ete(l_ot2e)~tt(~-I, ' [~=ote(l_ote2) 

p , o  ' ' J  

Functional (1.4) and isothermal condition (1.3) are written in the form 
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Sk 
QPr v~e~° = - I  (b~W~ ds (1.8) 

Q* = 2rCgteoCpTeo ~ lSVmax 0 [, ~t Jr=0 

N* = N s, l 
21r, aVeolVma x = J fmE(1-¥w)2ds' f =  = ,, ~2,3v/tv-I) (1.9) 0 rUtet, S --tXel 

In the new variables, the variational problem is formulated as follows: among the continuous controls 
re(s), it is required to find that control which gives a minimum value of functional (1.8) subject to 
conditions (1.6)-(1.7) and isothermal condition (1.9). 

The Euler-Lagrange equations for the axially symmetric case are identical in form to the 
Euler-Lagrange equations for the plane case [12, 13], since Eqs (1.6) are identical in form to the 
boundary-layer equations for the plane case. A similar assertion also holds in the case of the transversality 
conditions. Consequently, to solve the optimization problem one can use the approach in [12], which 
is based on the combined use of the theory of N6ther invariant problems and the infinitesimal apparatus 
of Lie and Ovsyannikov. This approach enables one to obtain (as in the plane case) an approximate 
similar formula for the optimum specific flow rate of the coolant in the neighbourhood of the critical 
point in the form 

[ re<x)= Pr0-~2")2~"~-" ~AI" + NOB?')+ CAI ~' + NoBI2')+ 
2O~Uo(I - to o / 0 0 )  2 

(1.10) 

Here 

A~ 0 = Y*b+s*Po, A~ 2~ = P,a+y*b+s*Po 
PIP2 PI(P! --P2) 

B["= 12a* B[2)= 12a* +p:*  B[3) = 12a* + p2s* 
Pa P2 P! (Pf - P2 ) '  P2 (P2 - Pl ) 

a=y*Uo-s*N o, b =S  o - 2 U  o, a*=sQo- '~U o "  * 

2c ~ 0 o 0 I po = l° f 2m° + ° ° - 1 - ~ 2 o 2 )  U ° = - - - + - -  
Pr ~, 00 0 o ' 6 4 

No= I - ~ r  +--i2' Q°=-~o' S °=m°-W°  

' °=4~L:-3~-0° '  / '=4f¢°°-2t'°'/ '0o K 

W o = m o - P r 0 o  + Z o, 

" • x - T i l T - l ]  

& 

~t* = -eo  - ~ , Q o  + P, Po, 

12( NoZo 
~, = -  M o !  ~, Uo ) 

't ......... v+!  ]-, ,cv-, ) 

s* = Wo - a # o  - 13~So 

_ _  ,(, , )  13,; Zo. 
Uo M o =  o ~ + 6 P r  

A~ 3~ = P2a+~*b+s*Po 

P2(P2 --Pl) 

f L  0_LI 
Z o = _.:-q. + 

6 3 

(1.11) 

and Pl and P2 are the roots of the quadratic equation 
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: ,11 , 

It should be emphasized that this equation is not equivalent to the similar equation obtained for the 
plane case in [12]. 

The constants 0o, 01, tOo, (Ol are found from the algebraic system of equations 

32c 34c 
O o = 18m o-701 -900 +i0to I +8000- 01 + 0o 

16c 20c 
01 = 12m o -400 -601 +Stoj +4o) o - Ow + O'o" 

0'12 (t)2 tOO 
tO  I - -  tOO - 0.) 0 - -  3 0 )  I - 4 ~ 1  + " - ' 0  + 

- 6 m °  O--'o- Oj O o 6C~-o2 + 

+c ( l+  I ~[ I (4to__k_3to__0_0)_2to___Q0]_ 6c (4~___L_3to0) (1.13) 
Vr)L600t, 0, 0 o )  0,0 oj  Pr0 o~, 0, 0 o j  

too = 0o(l -xw) 

which hold for the case when the viscosity depends linearly on the temperature. 
In formulae (1.11) and (1.13), mo is the coolant flow rate, which is constant along the generatrix of 

the solid of revolution. 

2. THE SHAPE OF THE INTERNAL WALL CONTOUR 
WHICH ENSURES THE R E Q U I R E D  T E M P E R A T U R E  

OF THE OUTSIDE OF THE SKIN 

Usually, in solving problems of non-destructive heat shielding, it is assumed that the desired wall 
temperature (on the gas flow side) is maintained using an appropriate, regulating flow of coolant through 
a porous or perforated surface. Since, in solving the variational problem considered here, the local gas 
flow rate has already been chosen as the contro l, we will select a variable wall thickness in order to 
ensure the required temperature of the outside of the skin. From a mathematical point of view, the 
equation of conservation of energy in the heat shielding shell of the apparatus has to be added to the 
boundary-layer equations. When account is taken of the assumptions that the medium is 
h~aogeneous and one-temperature in the case of steady flow past a sphere, the equation of conservation 
ofenergy can be written in the form [14] 

~* 32T__~* _ (  Cp(pu.)w 

3cy 2 ~( l+y /ro)  2 

k* = ~.~(I - I-l)+ ~.21-I 

2 ~.* /aT* =0  (2.1) 
r o I + y l r o )  ay 

Here, T* is the temperature of the porous wall, ~. is the thermal conductivity, p is the density, Cp is the 
specific heat capacity, r0 is the radius of the sphere (the subscript 1 corresponds to the characteristics 
of the solid component of the shell and the subscript 2 corresponds to the characteristics of the coolant, 
which is injected into the porous material), H is the porosity of the material, and the x andy coordinates 
are chosen in the same way as for the main flow. 

The following boundary conditions are used for Eq: (2.1) 

y = 0 :  T*=Tw; y = - h ,  T * = T  c (2.2) 

where h(x) is the wall thickness and Tc is the temperature of the coolant on the inner contour of the 
wall. 

We will represent the condition for the heat fluxes to match on the streamlined surface in the 
form 
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aT* _ ~, aT  

The solution of Eq. (2.1) which satisfies boundary conditions (2.2) has the form 

T*(x,y)=Tw+(Tc-Tw 1-ex k 2 ylr° I - e x p - k  2 hlr° 
I + y / r  o I - h l r  o 

k 2 = rocpl (Pv)w 

(2.3) 

(2.4) 

Taking account of relation (2.4), equality (2.3) can be written in the form 

I (4 (I)' 3q)°) - r Prm(I-~O-,c'~l-exp(-m~) h -:~, : -  -~o J -qrw k fo ,4. I -h /ro  

Here 

(2.5) 

2 

a= P,oG./ v72. q= 
X" ~ ro 

Solving Eq. (2.5) for h(x), we obtain 

InS 
h(x) = r° I In S -  m5 (2.6) 

S=l+_.~r P rm( l_q lo_ t  ~_..1 (4~01_3q}0~] -I 
qro \ fo c ~.fo ~ f~ fo )J 

Hence, after the optimal control re(x) (which gives the minimum heat flux value at the specified 
temperature xw) has been found, the variation in the wall thickness h(x) which ensures the temperature 
xw is determined using formula (2.6), where the functions f0, fx, (Po, ~01 are the solutions of the 
approximating system of the second order of approximation (a prime denotes differentiation with respect 
to the variable • = xr~ 1 [14]) 

f~ = 18m~-6~ +9fo 5 4 ~ _ 3 2 q _ 3 4  q - --~ ~0, -T~Oo 6 J fJ fo 

,2m7 i2R(f°+ f~ 2 _ ~ _ ~ ] _ 1 6 q + 2 0  q if= - "~T -:---~o, ~, ft fo 

q~;=6m~7.o_6~(~TO_÷ qh 2(1)2 l q)g~+6qq) o (2.7) 
]o L o 2 3 ~  6 f o )  - ~ o  2 + 

')( l (4qh 3~POI 2 q~O 3 6 q (4 (p'-3~l+4qr~ I I~{Z2 
Pr 6fo A fo 3fofl Prfo fJ ]o) krr  

+6q i+ . . . . . . . . . . . .  : f~  

q)~) = -foXw' + ( i -  1:w)f d' 
F =_~.r i~ = a~ r2a,( l_ a~)va~-h 

r o '  a t ( I -a t2)  ' q=  

The initial conditions (in the case of a blunt solid of revolution) have the form 

f ( o )  = fj (o )  = ~ o )  = ~j  (o)  --- o 
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3. A C O M P U T A T I O N A L  E X P E R I M E N T  T O  O P T I M I Z E  H E A T  A N D  M A S S  
T R A N S F E R  O N  A P E R M E A B L E  S P H E R E  

A computational experiment was carried out for the case of supersonic flow (M~ = 7) ~ast a sphere of radius r 0 
= 0.05 m. The parameters of standard atmosphere corresponded to a height H = 10 m. Corrosion-resistant 
14X17H2 steel with a porosity H = 0.3, a thermal conductivity ~.* = 32 W/m K and a permeability Kn = 6.4 x 10 -14 
m 2 [9] was chosen as the wall material. The dependence of the viscosity on temperature was taken as linear and 
b(~) = 1 [10]. 

The optimal injection law m(~') (solid curve 1), determined using formula (1.10) for the case when x k = 1, "r,~ 
= 0.25, T c = 273 K and for a power corresponding to constant injection m 0 = 0.2 (dashed curve 1) is shown in 
the figure. The gain in the value of the functional compared with constant injection is approximately 32%. The 
wall thicknesses corresponding to the optimal control (solid curve 2) and to constant injection (dashed curve 2) 
are also shown. It should be noted that the wall corresponding to the optimal injection is easier to make (its thickness 
is almost constant) than a wall which corresponds to constant injection. 

Note that, in the case of a flow past a sphere, the efficiency of porous cooling is estimated as the ratio of the 
integral heat flux, which is shielded because of the injection, to the gas flow rate [16] 

r. T x, ]- '  J=| I rqodx- j rq.,dx|tH.o-Hw)~ r(pu)wdxj 
LO o _IL 

(3.1) 

where q0 is the local heat flux when there is no injection and q~ is the local heat flux when there is injection. 
If the total flow rate of the coolant 

P = xj, r(pu)~dx 
21Jro o 

is specified, then, at a specified wall temperature, the problem of maximizing functional (3.1) is equivalent to the 
problem of minimizing the heat flux (1.4) which has been considered earlier. 

This  r e sea rch  was s u p p o r t e d  by the C o m p e t i t i o n  Cen t re  for  Basic Na tu ra l  Science at St Pe te rsburg  
State University. 
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